Finite Element Method (FEM)

The finite element method (FEM) is the oldest numerical technique applied to engineering
problems. FEM itself is not rigorous, but when combined with integral equation
techniques it can yield rigorous formulations. Advantages of FEM:

1. Sparse matrices result (as opposed to MM for which dense matrices result). Sparse
matrices allow the application of awide range of fast matrix solvers.

2. Its application involves discretization of the computational domain, and therefore is
adaptable to awide range of geometries and material variations.

Traditional applications like civil and mechanical engineering use scalar node basis
functions. Vector edge basis functions are more appropriate for electromagnetic
problems because

- EM problems require solutions of vector quantities

- Volume currents are required, not just surface currents

- Continuity and boundary conditions are applied to edges, not just nodes (points)
- Spurious solutions occur with nodes
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FEM Formulation (1)

The figure illustrates the generic problem. The computational region is the enclosed
volume, W. The vector wave equation is the starting point for the FEM solution
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A testing procedure is used similar to the method of moments. Each side is multiplied by
atesting (weighting) function, and integrated. Using the inner product notation

(AW)= pA- Waw:
W

where W isthe test function and A a
field or current. ldeally, the two sides
of the wave eguation should be equal
and the difference zero. In practice the
difference will not be zero, so we
minimize the functional

F(E)=(L (E),W)- < vv>
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FEM Formulation (2)

Green'sfirst vector identity is used to eliminate the double curl. Theresult isreferred to
as the weak form of the wave equation. Testing the weak form gives the following
equation:

—>

Ogi E)- (N W)- ke, E
m
W

~ 1 -
WHW- A= (A° K E)- Wds+ &, - WdW=0
i 0—( ) Vce

where f; =0 for scattering problems, but not for antenna problems. The unknown
quantity isthe electric field, E. A dual equation can be derived for H.

E and H arethetotal fields(H = H; + H. and E = E; + E.). Theincident fieldsare
known; the scattered fields are unknown.

The numerical solution for the integral equation begins by discretizing the volume into
subdomains. The fields will be computed on the boundaries of the subdomains.

In the equation for E, integrals over the PEC portions of the surfaces vanish. If the
exterior surface (the terminating boundary) is not PEC then a boundary condition must be
imposed. (For scattering problems, there should be no reflection at this boundary because
It is merely a computational surface, not a physical surface.)
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FEM Formulation (3)

The surface integral for the terminating boundary can be handled in several ways.

1. For radiation problems where the source isinside, a perfectly matched layer (PML)
can be used just inside of the boundary.

2. The surface integral can be replaced by one that incorporates a general boundary
condition.

3. An dternative isto use the method of moments to find the equivalent currents on the
outer boundary. However, since the surface currents couple with the fields inside,
the MM matrix equation must be solved with the FEM matrix equation.

Example: An infinitely long conducting cylinder (arbitrary cross section) using a PML
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FEM Formulation (4)

For the discretized volume with atotal of N subdomains, each with N, edges, the
scattered field can be expanded into a series of basis functions with unknown expansion

coefficients, Er,. Thefield inside subdomain e can be expressed as

_ Ne -
E°= AE;WS (e=1,...,N)
m=1

where the expansion coefficients are determined by solving the matrix equation:
eAmnu s ?nu— gBﬁnH or AE=B

The overbar is a column vector and the double overbar atwo sguare matrix. The vector
and matrix elements are of the form
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Perfectly Matched Layers (1)

The electrical characteristics of a material are completely described by complex
permittivity and permeability matrices
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Using this notation, Maxwell’ s equations can be written in matrix form. For example,

D=6E P Dy=exE,+eyE, +e,E,, etc.andN" H = jwEE

Most materials have diagonal permittivity and permeability matrices
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For ahomogeneous isotropic medium: a =b =c.
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Perfectly Matched Layers (2)
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As in the standard solution of the plane wave reflection coefficients, the fields are

written for the two media and tangential components equated at the boundary. However,
the dispersion relationship must be used to determine under what conditions the reflection
coefficients will be zero. Theresult is'

_ cosq; - ~b/acosqg;

R, = R+ =
TE cosq; ++/b/acosqg,
~/b/acosg; - cosq;
Rj=Rrm = t '

cosg; ++/b/acosqg;

1See S. D. Gedney, “An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices” |EEE Transactions
on Antennas & Propagation, vol. 44, no. 12, Dec. 1996.
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Perfectly Matched Layers (3)

The reflection coefficients will be zero if
a=b P Ry =RpEe=0
and independent of angle if ~/bc =1. Therefore,
Jbccosq, =cosq; P ~/bc=1

Choosea=b=A- |Band c=

(Aand B arereal). A good choiceis A=B » 1.

A- |B
Features of the PML:

1. It isareflectionless medium for all frequencies and incidence angles

2. Not physically realizable, but it is used as a termination for computational domains in
numerical solutions

3. B controls the absorptivity of the layer

4. The PML represents a perfectly matched uniaxial anisotropic medium

Version 4 (Nov. 2003)



Grid Termination Methods (1)

The two most common methods for terminating the computational domain are;

(1) Perfectly Matched Layers (PMLs) — The grid is bounded by alayer of nonreflecting
material.

(2) Absorbing Boundary Conditions (ABCs) — A boundary condition is applied to the
field at the edge of the grid so that the radiation conditions are satisfied (the transmitted
field decays to zero at infinity and no reflection at the computational boundary). ABCs
take on various forms and are also referred to as transparent boundary conditions and
radiation boundary conditions.

Both can be applied conformally or non-conformally.
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Grid Termination Methods (2)
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The grid can be terminated by a perfectly matched layer with ametal backing. The
thickness and loss of the layer are determined so that the reflections from it are negligible.

- This approach is convenient but requires additional nodes in the computational
domain (i.e., the nodes inside of the PML)

- Typical valuesare e, = n, =1- j and PML thicknessd = 0.15I
- The closest points on the target should be 1l ; - 2| , from the PML

- Conformal layers are preferred because they minimized the number of additional
nodes
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Absorbing Boundary Conditions (1)

The electric and magnetic fields satisfy the vector wave equations
N'R"y-kiy =0

wherey iseither Eor H. All physicaly realizable fields must decay to zero at infinity.
Thisisthe radiation condition, which can be expressed as

lim r{f" (N"y")- jky} =0

re ¥
The fields can be expressed as a series of termsin powers of 1/r (the Wilcox expansion
theorem)
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Absorbing Boundary Conditions (2)

If the radiation condition is applied at afinite distancer that isin the far field of the scat-
terer, then thereisno error. The higher order terms will be forced to zero by equating
fields on the boundary

L\‘} Scatterer

If the boundary condition is applied at adistancer that isin the near field, then the bound-
ary condition isin error. Waveswill be set up inside Sto match the error terms at the

boundary. In the above example, the error will be on the order of 1/ r denoted o(r 2).
Higher order boundary conditions can be derived. For example?,

i 82(r (N7)- fk-20n-2)7r) (7 (N7y)- jky*tan)gzo

wherey ., =-r (r"y"), satisfies the Nth order condition: O(r” 2|\"1).

2 A. Pederson, “ Absorbing Boundary Conditions for the Vector Wave Equation,” Microwave & Optical Tech. Lett., vol. 1, pp.62-64.
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Absorbing Boundary Conditions (3)

Example: For a second order condition the error is O(r 5). The exact field at distance
r has an infinite number of terms;

g 1 Y1 .Y2 Y30
— — 1 2 3
y +7 =47 £ 47 2%
PRI 4y r 2 3y
[kr kr -
+eJ +A5+ O+ eJ E@A' BS+---9
4or r4 rd g 4pr rd pd 1]

Fictitious ou}rgoi ng waves Fictitious incomi ng waves
Note:
Low order boundary conditions must be used at larger or significant errors occur.
However, thisrequires alarger computational domain (i.e., more basis functions).
Higher order boundary conditions can be applied closer to the surface, but by are more
complex and difficult to implement.
Note that an increasing number of derivatives are required as the order increases.
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Absorbing Boundary Conditions (4)

There are many forms of absorbing boundary conditions, but in general

1. They are all derived from the radiation conditionsas R® ¥

2. ABCs are equivalent to a surface impedance boundary condition

3. The particular form depends on the distance from the scattering surface at which they
are applied. Relatively ssimple equations (first order) can be used when applied far
fromthetarget (1 ;- 2l 5, where |  isthe free space wavelength).

4. ABCs applied on conformal surfaces are more complex than those applied on
coordinate variable constant planes

Another exampleisthefirst order conformal ABC based on geometrical optics
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FEM Subdomains (1)
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TWO-DIMENSIONAL EXAMPLE:
INFINITE CYLINDER WITH
SURROUNDING MESH
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FEM Subdomains (2)

For two-dimensional problems triangular subdomains are used. For triangle e, edge k:
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The edge function for edge n has only atangential component across edge n and only
normal components across the other two edges. The field within triangleeisa
superposition of the three edge components

_ 3 -
E°= 3 EOWS
k=1
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FEM Subdomains (3)

For three-dimensional problems, tetrahedra are generally used

R3 EXAMPLE: EDGE ELEMENT ASSOCIATED WITH EDGE 1

W, =/1(LNLy - LoNLy)
_ VOLUME P234
2~ VOLUME 1234

| VOLUME P341
1~ VOLUME 1234

/1 =LENGTH OF EDGE 1

P =POINT AT (X,Y, 2)
2

The field associated with edge 6 is shown in the figure. Note that:

1. Thefield turns around edge 6 (which has endpoints 3 and 4).

2. Thefield is normal to the planes containing nodes 3 and 4.

3. Thereistangential continuity across faces

4. There are six edge elements per tetrahedron. Some may be shared with adjacent
tetrahedra.
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Plate RCS Using HFSS (1)

The High Frequency Structures Simulator (HFSS) is used to solve transmission line, antenna,
and electromagnetic scattering problems using FEM. It has a powerful graphical user’s
interface (GUI) for building structures, assigning excitations, meshing, computational

parameters, and post processing.

Setup for a sguare plate:

- frequency: 7.5 MHz
(40 m wavelength)
plate dimensions: 200
m by 200 min the x-y
plane (5 wavelengths
square)
plate thickness: 0.1 m
radiation box
dimensions: 220 m by
220 m by 40 m
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Plate RCS Using HFSS (2)

HFSS has its own computer-aided design (CAD) interface to define the geometry. Drawing
data can also be imported from other CAD software packages. HFSS automatically meshes
the target and surrounding computational space (the “radiation box”). Radiation boundary
conditions are applied on the surfaces of the radiation box.

Close-up of plate mesh
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Close-up of radiation box mesh
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Plate RCS Using HFSS (3)
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Bistatic RCS of the square plate for TM polarized g = 0°incidence.
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Plate RCS Using HFSS (4)
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Bistatic RCS of the square plate for TM polarized g = 45" incidence.
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Ailrcraft Modd 1n HFSS

Gripen aircraft model with Rendered Aircraft (red is dielectric)
cylindrical computational boundary
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Alrcraft Bistatic RCS From HFSS
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FEM Summary

- FEM isafrequency domain method

- Advantages include geometric and material adaptability, sparse matrices, and
compatibility with other engineering analyses

- Approximate grid termination techniques include

1. Perfectly matched layers — not physically realizable, but good for computational
purposes

2. Absorbing boundary conditions — complicated when the ABC is applied close to
the target surface; ssmple when far away, but not “node efficient”

- Rigorous termination of the grid requires solving an integral equation for the surface
currents on the grid boundary using MM (thisisreferred to as the finite element —
boundary integral method, FE-BI)

1. Requires solution of the FEM and MM matrix equations simultaneously

2. The MM partition is dense; the FEM partition is sparse. Therefore the
computational intensity has increased substantially.
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